Introduction to Distributed Data Streams

Graham Cormode

graham@research.att.com

Data is Massive

Data is growing faster than our ability to store or index it

- There are 3 Billion Telephone Calls in US each day (100BN minutes), 30B emails daily, 4B SMS, IMs.
- Scientific data: NASA's observation satellites generate billions of readings each per day.
- IP Network Traffic: can be billions packets per hour per router. Each ISP has many (hundreds) routers!
- Whole genome sequences for individual humans now available: each is gigabytes in size

Massive Data Analysis

Must analyze this massive data:

- Scientific research (monitor environment, species)
- System management (spot faults, drops, failures)
- Customer research (association rules, new offers)
- For revenue protection (phone fraud, service abuse)

Else, why even measure this data?

Example: Network Data

- Networks are sources of massive data: the metadata per hour per router is gigabytes
- Fundamental problem of data stream analysis:
 Too much information to store or transmit
- So process data as it passes each network device: one pass, small space—the *data stream* approach
- Approximate answers to many questions are OK, if there are guarantees of result quality

Streaming Data Questions

- Network managers ask questions requiring us to analyze and mine the data:
 - Find hosts with similar usage patterns (clusters)?
 - Which destinations or groups use most bandwidth?
 - Was there a change in traffic distribution overnight?
 - Build predictive models for future behavior?
- Complexity comes from scale of the distributed data
- Will introduce solutions for these and other problems

Other Streaming Applications

Wireless monitors

- Monitor habitat and environmental parameters
- Track many objects, intrusions, trend analysis...

Utility Companies

- Monitor power grid, customer usage patterns etc.
- Alerts and rapid response in case of problems

Data Stream Models

- We model data streams as sequences of simple tuples
- Problems hard due to scale and dimension of many streams

X

X

- Arrivals only streams:
 - Example: (x, 3), (y, 2), (x, 2) encodes the arrival of 3 copies of item x, 2 copies of y, then 2 copies of x.
 - Could represent eg. packets on a network; power usage
- Arrivals and departures:
 - Example: (x, 3), (y,2), (x, -2) encodes
 final state of (x, 1), (y, 2).
 - Can represent fluctuating quantities, or measure differences between two distributions

Models of Distribution

One-shot computation [Gibbons, Tirthapura 01, Feldman et al. '08]

- Build compact summaries of data that can be combined
- Gossip-based communication [Kempe, Dobra, Gehrke 03]
 - Opportunistically swap info with neighbors until convergence
- Continuous computation [C, 2011]
 - Track a (complex) function of distributed values

MUD Model

Massive Unordered Data (MUD) model [Feldman et al. '08]

- Special case of MapReduce/Hadoop processing
- Theorem: Can simulate any deterministic streaming algs
- Parameters: space used by each machine, message size, time

Approximation and Randomization

Many things are hard to compute exactly over a stream

- Is the count of all items the same in two different streams?
- Requires linear space to compute exactly
- Approximation: find an answer correct within some factor
 - Find an answer that is within 10% of correct result
 - More generally, a $(1\pm \varepsilon)$ factor approximation
- Randomization: allow a small probability of failure
 - Answer is correct, except with probability 1 in 10,000
 - More generally, success probability (1- δ)
- Approximation and Randomization: (ε , δ)-approximations

First examples of streaming algorithms

- How to draw a random sample?
- How to estimate the entropy of a distribution?
- How to efficiently find heavy hitters?
- How to test if two distributed streams are equal?
- How to compactly represent a set?
- ...and do all of this over distributed data?

Small Summaries

A summary (approximately) allows answering such questions

- To earn the name, should be (very) small!
 - Can keep in fast storage
- Should be able to build, update and query efficiently
- Key methods for summaries:
 - Create an empty summary
 - Update with one new tuple: streaming processing
 - Merge summaries together: distributed processing
 - Query: may tolerate some approximation

Sampling From a Data Stream

Fundamental prob: sample m items uniformly from data

- Useful: approximate costly computation on small sample
- Challenge: don't know how large total input is
 - So when/how often to sample?
- Several solutions, apply to different situations:
 - Reservoir sampling (dates from 1980s?)
 - Min-wise sampling (dates from 1990s?)

Min-wise Sampling

- For each item, pick a random fraction between 0 and 1
- Store item(s) with the smallest random tag [Nath et al.'04]

- Each item has same chance of least tag, so uniform
- Can run on multiple streams separately, then merge

Advanced Sampling

- Sampling widely used in practice: simple semantics
 - Can often apply exponential (Chernoff) error bounds
 - Sample of $O(1/\epsilon^2)$ items gives ϵ additive error on predicate queries
- Much active research around sampling:
 - Sampling from unaggregated, weighted data?
 - Getting the most value from your sample
 - Sampling according to functions of weights
 - Sampling over distributed data with negative weights

at&t

Application of Sampling: Entropy

Given a long sequence of characters

 $S = \langle a_1, a_2, a_3 \dots a_m \rangle$ each $a_j \in \{1 \dots n\}$

Let f_i = frequency of i in the sequence

Compute the empirical entropy:

 $H(S) = -\sum_{i} f_{i}/m \log f_{i}/m = -\sum_{i} p_{i} \log p_{i}$

- Example: S = < a, b, a, b, c, a, d, a>
 - $p_a = 1/2, p_b = 1/4, p_c = 1/8, p_d = 1/8$
 - $H(S) = \frac{1}{2} + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{8} \times 3 = \frac{7}{4}$
- Entropy promoted for anomaly detection in networks

Sampling Based Algorithm

Simple estimator (the "AMS estimator"):

- Randomly (min-wise) sample a position j in a single stream
- Count how many times a_i appears subsequently = r
- Output X = -($r \log (r/m) (r-1) \log(r-1)/m$)
- Claim: Estimator is unbiased E[X] = H(S)
 - Proof: prob of picking j = 1/m, sum telescopes correctly
- Variance is not too large Var[X] = O(log² m)
 - Can be proven by bounding $|X| \leq \log m$

Analysis of Basic Estimator

• A general technique in data streams:

- Repeat in parallel an unbiased estimator with bounded variance, take average of estimates to improve result
- Use concentration bounds (next lecture) to guarantee accuracy
- Number of repetitions depends on ratio Var[X]/E²[X]
- For entropy, this means space O(log² m / H²(S))
- Problem for entropy: when H(S) is very small?
 - Space needed for an accurate approx goes as 1/H²!

Outline of Improved Algorithm

- Observation: only way to get H(S) = o(1) is to have only one character with p_i close to 1
- If we can identify this character, and make an estimator on stream without this token, can estimate H(S)
- How to identify and remove all in one pass?
- Keep a "back up" sample from the stream with a_i removed
 - Use the back-up sample to estimate H if a_i is most frequent item
- Full details and analysis in [Chakrabarti, C, McGregor 07]
 - Total space is $O(\epsilon^{-2} \log m \log 1/\delta)$ for (ϵ, δ) approx

Distributing entropy computation

- Entropy summary allows update but not merge
 - How to set counts when summaries sample different items?
- Can simulate the above algorithm across distributed streams:
 - All observers keep in sync over what are current sampled items
 - Keep local counts of occurrences, can sum when required
- Adapt existing analysis to bound communication cost
 - Show that number of times sample changes is O(log n)
- Need new approach for more general models:
 - If we want to build a self-contained summary for entropy...
 - If we want to continuously monitor entropy...

Misra-Gries Summary (1982)

- Misra-Gries (MG) algorithm finds up to k items that occur more than 1/k fraction of the time in the input
- **Update**: Keep k different candidates in hand. For each item:
 - If item is monitored, increase its counter
 - Else, if < k items monitored, add new item with count 1
 - Else, decrease all counts by 1

Streaming MG analysis

- N = total weight of input
- M = sum of counters in data structure
- Error in any estimated count at most (N-M)/(k+1)
 - Estimated count a lower bound on true count
 - Each decrement spread over (k+1) items: 1 new one and k in MG
 - Equivalent to deleting (k+1) distinct items from stream
 - At most (N-M)/(k+1) decrement operations
 - Hence, can have "deleted" (N-M)/(k+1) copies of any item
 - So estimated counts have at most this much error

Merging two MG Summaries [ACHPWY '12]

Merge algorithm:

- Merge the counter sets in the obvious way
- Take the (k+1)th largest counter = C_{k+1} , and subtract from all
- Delete non-positive counters
- Sum of remaining counters is M₁₂
- This keeps the same guarantee as Update:
 - Merge subtracts at least (k+1)C_{k+1} from counter sums
 - So $(k+1)C_{k+1} \leq (M_1 + M_2 M_{12})$
 - By induction, error is $((N_1-M_1) + (N_2-M_2) + (M_1+M_2-M_{12}))/(k+1) = ((N_1+N_2) - M_{12})/(k+1)$

(prior error) (from merge) (as claimed)

A Powerful Summary

MG summary with update and merge is very powerful

- Builds a compact summary of the frequency distribution
- Can also multiply the summary by any scalar
- Hence can take (positive) linear combinations: $\alpha x + \beta y$
- Useful for building models of data
- Will later see sketches that allow arbitrary linear combinations

Fingerprints

- Test if two (distributed) binary streams are equal d₌ (x,y) = 0 iff x=y, 1 otherwise
- To test in small space: pick a suitable hash function h
- Test h(x)=h(y) : small chance of false positive, no chance of false negative
- Compute h(x), h(y) incrementally as new bits arrive
 - How to choose the function h()?

Polynomial Fingerprints

- Pick h(x) = ∑_{i=1}ⁿ x_i rⁱ mod p for prime p, random r ∈ {1...p-1}
 Why?
- Flexible: h(x) is linear function of x—easy to update and merge
- For accuracy, note that computation mod p is over the field Z_p
 - Consider the polynomial in α , $\sum_{i=1}^{n} (x_i y_i) \alpha^i = 0$
 - Polynomial of degree n over Z_p has at most n roots
- Probability that r happens to solve this polynomial is n/p
- So Pr[$h(x) = h(y) | x \neq y$] $\leq n/p$
 - Pick p = poly(n), fingerprints are log p = O(log n) bits
- Fingerprints applied to small subsets of data to test equality
 - Will see several examples that use fingerprints as subroutine

Bloom Filters

Bloom filters compactly encode set membership

- k hash functions map items to bit vector k times
- Set all k entries to 1 to indicate item is present
- Can lookup items, store set of size n in O(n) bits

- Duplicate insertions do not change Bloom filters
- Can be merge by OR-ing vectors (of same size)

Bloom Filter analysis

- How to set k (number of hash functions), m (size of filter)?
- False positive: when all k locations for an item are set
 - If ρ fraction of cells are empty, false positive probability is $(1-\rho)^k$
- Consider probability of any cell being empty:
 - For n items, Pr[cell j is empty] = $(1 1/m)^{kn} \approx \rho \approx exp(-kn/m)$
 - False positive prob = $(1 \rho)^k = \exp(k \ln(1 \rho))$

= exp(-m/n ln(ρ) ln(1- ρ))

- For fixed n, m, by symmetry minimized at $\rho = \frac{1}{2}$
 - Half cells are occupied, half are empty
 - Give $k = (m/n) \ln 2$, false positive rate is $\frac{1}{2}^k$
 - Choose m = cn to get constant FP rate, e.g. c=10 gives < 1% FP</p>

Bloom Filters Applications

- Bloom Filters widely used in "big data" applications
 - Many problems require storing a large set of items
- Can generalize to allow deletions
 - Swap bits for counters: increment on insert, decrement on delete
 - If representing sets, small counters suffice: 4 bits per counter
 - If representing multisets, obtain sketches (next lecture)
- Bloom Filters are an active research area
 - Several papers on topic in every networking conference...

Coming Soon

Lecture 2: Sketches and Concentration Bounds

- Randomized sketch data structures (Count-Min, AMS, F0)
- Proved using Markov, Chebyshev, Chernoff inequalities
- Lecture 3: L_p sampling & Streaming verification
 - L_p sampling, with application to graph computations
 - Verifiable stream computations with interactive proofs
- Lecture 4: Distributed Continuous Monitoring & Lower Bounds
 - The distributed continuous model and algorithms
 - Lower bounds: what can't we do efficiently?

Sketch Data Structures and Concentration Bounds

Frequency Moments

- Intro to frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

Frequency Distributions

- Given set of items, let f_i be the number of occurrences of item i
- Many natural questions on f_i values:
 - Find those i's with large f_i values (heavy hitters)
 - Find the number of non-zero f_i values (count distinct)
 - Compute $F_k = \sum_i (f_i)^k$ the k'th Frequency Moment
 - Compute $H = \sum_{i} (f_i/F_1) \log (F_1/f_i)$ the (empirical) entropy
- "Space Complexity of the Frequency Moments" Alon, Matias, Szegedy in STOC 1996
 - Awarded Gödel prize in 2005
 - Set the pattern for many streaming algorithms to follow

Concentration Bounds

- Will provide randomized algorithms for these problems
- Each algorithm gives a (randomized) estimate of the answer
- Give confidence bounds on the final estimate X
 - Use probabilistic concentration bounds on random variables
- A concentration bound is typically of the form $\Pr[|X - x| > \varepsilon y] < \delta$
 - At most probability δ of being more than ϵy away from x

Markov Inequality

- Take any probability distribution X s.t. Pr[X < 0] = 0</p>
- Consider the event $X \ge k$ for some constant k > 0
- For any draw of X, $kI(X \ge k) \le X$
 - Either $0 \le X < k$, so $I(X \ge k) = 0$
 - Or $X \ge k$, lhs = k
- Take expectations of both sides: k Pr[X ≥ k] ≤ E[X]
- Markov inequality: $Pr[X \ge k] \le E[X]/k$
 - Prob of random variable exceeding k times its expectation < 1/k
 - Relatively weak in this form, but still useful

Sketch Structures

Sketch is a class of summary that is a linear transform of input

- Sketch(x) = Sx for some matrix S
- Hence, Sketch($\alpha x + \beta y$) = α Sketch(x) + β Sketch(y)
- Trivial to update and merge
- Often describe S in terms of hash functions
 - If hash functions are simple, sketch is fast
- Aim for limited independence hash functions h: $[n] \rightarrow [m]$
 - If $Pr_{h \in H}[h(i_1)=j_1 \land h(i_2)=j_2 \land ... h(i_k)=j_k] = m^{-k}$, then H is k-wise independent family ("h is k-wise independent")
 - k-wise independent hash functions take time, space O(k)

Frequency Moments

- Intro to frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

Count-Min Sketch

- Simple sketch idea relies primarily on Markov inequality
- Model input data as a vector x of dimension U
- Creates a small summary as an array of w × d in size
- Use d hash function to map vector entries to [1..w]
- Works on arrivals only and arrivals & departures streams

Count-Min Sketch Structure

- Each entry in vector x is mapped to one bucket per row.
- Merge two sketches by entry-wise summation
- Estimate x[j] by taking min_k CM[k,h_k(j)]
 - Guarantees error less than εF_1 in size O(1/ $\varepsilon \log 1/\delta$)

[C, Muthukrishnan '04]

at&t

– Probability of more error is less than 1- δ

Approximation of Point Queries

Approximate point query x'[j] = min_k CM[k,h_k(j)]

- Analysis: In k'th row, CM[k,h_k(j)] = x[j] + X_{k,j}
 - $X_{k,j} = \sum_i x[i] I(h_k(i) = h_k(j))$
 - $\begin{array}{ll} & \ \mathsf{E}[\mathsf{X}_{k,j}] & = \sum_{i \neq j} \, x[i]^* \mathsf{Pr}[\mathsf{h}_k(i) = \mathsf{h}_k(j)] \\ & \leq \mathsf{Pr}[\mathsf{h}_k(i) = \mathsf{h}_k(j)] \, * \, \Sigma_i \, x[i] \\ & = \epsilon \, \mathsf{F}_1/2 \mathsf{requires only pairwise independence of } \mathsf{h} \end{array}$
 - $\Pr[X_{k,j} \ge \epsilon F_1] = \Pr[X_{k,j} \ge 2E[X_{k,j}]] \le 1/2$ by Markov inequality
- So, $\Pr[x'[j] \ge x[j] + \varepsilon F_1] = \Pr[\forall k. X_{k,j} > \varepsilon F_1] \le 1/2^{\log 1/\delta} = \delta$
- Final result: with certainty x[j] ≤ x'[j] and with probability at least 1-δ, x'[j] < x[j] + εF₁

Applications of Count-Min to Heavy Hitters

- Count-Min sketch lets us estimate f_i for any i (up to εF_1)
- Heavy Hitters asks to find i such that f_i is large (> ϕF_1)
- Slow way: test every i after creating sketch
- Alternate way:
 - Keep binary tree over input domain: each node is a subset
 - Keep sketches of all nodes at same level
 - Descend tree to find large frequencies, discard 'light' branches
 - Same structure estimates arbitrary range sums

Application to Large Scale Machine Learning

- In machine learning, often have very large feature space
 - Many objects, each with huge, sparse feature vectors
 - Slow and costly to work in the full feature space
- "Hash kernels": work with a sketch of the features
 - Works very well in practice!
- Similar analysis explains *why*:
 - Essentially, not too much noise on the important features

Count-Min Exercises

- The median of a distribution is the item so that the sum of the frequencies of lexicographically smaller items is ½ F₁. Use CM sketch to find the (approximate) median.
- 2. Assume the input frequencies follow the Zipf distribution so that the i'th largest frequency is $\theta(i^{-z})$ for z>1. Show that CM sketch only needs to be size $\varepsilon^{-1/z}$ to give same guarantee
- 3. Suppose we have data where frequencies of items are allowed to be negative. Extend CM sketch analysis to estimate these frequencies (note, Markov argument no longer works directly)
- 4. How to efficiently find the large absolute frequencies when some are negative? Or in the difference of two streams?

Frequency Moments

- Intro to frequency distributions and Concentration bounds
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

Chebyshev Inequality

- Markov inequality is often quite weak
- But Markov inequality holds for any random variable
- Can apply to a random variable that is a function of X
- Set Y = (X E[X])²
- By Markov, Pr[Y > kE[Y]] < 1/k</p>
 - $E[Y] = E[(X-E[X])^2] = Var[X]$
- Hence, Pr[|X E[X]| > v(k Var[X])] < 1/k</p>
- Chebyshev inequality: Pr[|X E[X]| > k] < Var[Y]/k²
 - If $Var[X] \le \varepsilon^2 E[X]^2$, then $Pr[|X E[X]| > \varepsilon E[X]] = O(1)$

F₂ estimation

AMS sketch (for Alon-Matias-Szegedy) proposed in 1996

- Allows estimation of F₂ (second frequency moment)
- Used at the heart of many streaming and non-streaming applications: achieves dimensionality reduction
- Here, describe AMS sketch by generalizing CM sketch.
- Uses extra hash functions $g_1...g_{\log 1/\delta}$ {1...U} → {+1,-1}
- Now, given update (j,+c), set CM[k,h_k(i)] += c*g_k(j)

F₂ analysis

• Estimate F_2 = median_k $\sum_i CM[k,i]^2$

- Each row's result is $\sum_{i} g(i)^2 x[i]^2 + \sum_{h(i)=h(j)} 2 g(i) g(j) x[i] x[j]$
- But $g(i)^2 = -1^2 = +1^2 = 1$, and $\sum_i x[i]^2 = F_2$
- g(i)g(j) has 1/2 chance of +1 or -1 : expectation is 0 ...

F₂ Variance

- Expectation of row estimate $R_k = \sum_i CM[k,i]^2$ is exactly F_2
- Variance of row k, Var[Rk], is an expectation:
 - $Var[R_k] = E[(\sum_{buckets b} (CM[k,b])^2 F_2)^2]$
 - Good exercise in algebra: expand this sum and simplify
 - Many terms are zero in expectation because of terms like g(a)g(b)g(c)g(d) (degree at most 4)
 - Requires that hash function g is *four-wise independent*: it behaves uniformly over subsets of size four or smaller
 - Such hash functions are easy to construct

F₂ Variance

Terms with odd powers of g(a) are zero in expectation

 $- g(a)g(b)g^{2}(c), g(a)g(b)g(c)g(d), g(a)g^{3}(b)$

Leaves

$$\begin{split} \text{Var}[\mathsf{R}_k] &\leq \sum_i g^4(i) \; x[i]^4 \\ &+ 2 \sum_{j \neq i} g^2(i) \; g^2(j) \; x[i]^2 \; x[j]^2 \\ &+ 4 \sum_{h(i) = h(j)} g^2(i) \; g^2(j) \; x[i]^2 \; x[j]^2 \\ &- (x[i]^4 + \sum_{j \neq i} 2x[i]^2 \; x[j]^2) \\ &\leq F_2^2/w \end{split}$$

- Row variance can finally be bounded by F₂²/w
 - Chebyshev for w=4/ ϵ^2 gives probability ¼ of failure: Pr[$|R_k - F_2| > \epsilon^2 F_2$] $\leq \frac{1}{4}$
 - How to amplify this to small δ probability of failure?
 - Rescaling w has cost linear in $1/\delta$

Tail Inequalities for Sums

- We achieve stronger bounds on tail probabilities for the sum of independent *Bernoulli trials* via the Chernoff Bound:
 - Let X₁, ..., X_m be independent Bernoulli trials s.t. Pr[X_i=1] = p (Pr[X_i=0] = 1-p).
 - Let $X = \sum_{i=1}^{m} X_i$, and $\mu = mp$ be the expectation of X.
 - Then, for $\varepsilon > 0$, Chernoff bound states:

 $\Pr[|X - \mu| \ge \varepsilon\mu] \le 2 \exp(-\frac{1}{2} \mu\varepsilon^2)$

- Proved by applying Markov inequality to $Y = \exp(X_1 \cdot X_2 \cdot ... \cdot X_m)$

Applying Chernoff Bound

- Each row gives an estimate that is within ε relative error with probability p' > ³/₄
- Take d repetitions and find the median. Why the median?

- Because bad estimates are either too small or too large
- Good estimates form a contiguous group "in the middle"
- At least d/2 estimates must be bad for median to be bad
- Apply Chernoff bound to d independent estimates, p=1/4
 - Pr[More than d/2 bad estimates] < 2exp(-d/8)</p>
 - So we set $d = \Theta(\ln 1/\delta)$ to give δ probability of failure
- Same outline used many times in data streams

Aside on Independence

- Full independence is expensive in a streaming setting
 - If hash functions are fully independent over n items, then we need $\Omega(n)$ space to store their description
 - Pairwise and four-wise independent hash functions can be described in a constant number of words
 - Pairwise hashing: $Pr_{over random choice of h}[h(i) = h(j)] = 1/(range(h))$
- AMS sketch uses a careful mix of limited and full independence
 - Each hash function is four-wise independent over all n items
 - Each repetition is fully independent of all others but there are only $O(\log 1/\delta)$ repetitions.

AMS Sketch Exercises

- Let x and y be binary streams of length n. The Hamming distance H(x,y) = |{i | x[i]≠ y[i]}| Show how to use AMS sketches to approximate H(x,y)
- 2. Extend for strings drawn from an arbitrary alphabet
- 3. The inner product of two strings x, y is $x \cdot y = \sum_{i=1}^{n} x[i]^* y[i]$ Use AMS sketches to estimate $x \cdot y$
 - Hint: try computing the inner product of the sketches.
 Show the estimator is unbiased (correct in expectation)
 - What form does the error in the approximation take?
 - Use Count-Min Sketches for same problem, compare the errors.
 - Is it possible to build a $(1\pm\epsilon)$ approximation of $\mathbf{x} \cdot \mathbf{y}$?

Frequency Moments

- Introduction to Frequency Moments and Sketches
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

F₀ Estimation

- F₀ is the number of distinct items in the stream
 - a fundamental quantity with many applications
- Early algorithms by Flajolet and Martin [1983] gave nice hashing-based solution
 - analysis assumed fully independent hash functions
- Will describe a generalized version of the FM algorithm due to Bar-Yossef et. al with only pairwise indendence

F₀ Algorithm

- Let m be the domain of stream elements
 - Each item in data is from [1...m]
- Pick a random (pairwise) hash function h: $[m] \rightarrow [m^3]$
 - With probability at least 1-1/m, no collisions under h

- For each stream item i, compute h(i), and track the t distinct items achieving the smallest values of h(i)
 - Note: if same i is seen many times, h(i) is same
 - Let v_t = t'th smallest (distinct) value of h(i) seen
- If $F_0 < t$, give exact answer, else estimate $F'_0 = tm^3/v_t$
 - $v_t/m^3 \approx$ fraction of hash domain occupied by t smallest

Analysis of F₀ algorithm

• Suppose $F'_0 = tm^3/v_t > (1+\varepsilon) F_0$ [estimate is too high]

- So for input = set $S \in 2^{[m]}$, we have
 - $|{ s ∈ S | h(s) < tm³/(1+ε)F₀}| > t$
 - Because $\varepsilon < 1$, we have $tm^3/(1+\varepsilon)F_0 \le (1-\varepsilon/2)tm^3/F_0$
 - Pr[h(s) < $(1-\epsilon/2)tm^3/F_0$] $\approx 1/m^3 * (1-\epsilon/2)tm^3/F_0 = (1-\epsilon/2)t/F_0$
 - (this analysis outline hides some rounding issues)

Chebyshev Analysis

• Let Y be number of items hashing to under $tm^3/(1+\epsilon)F_0$

- $E[Y] = F_0 * Pr[h(s) < tm^3/(1+\epsilon)F_0] = (1-\epsilon/2)t$
- For each item i, variance of the event = p(1-p) < p</p>
- Var[Y] = $\sum_{s \in S} Var[h(s) < tm^3/(1+\epsilon)F_0] < (1-\epsilon/2)t$
 - We sum variances because of pairwise independence
- Now apply Chebyshev inequality:
 - $\begin{array}{ll} & \Pr[Y > t] \\ & \leq \Pr[|Y E[Y]| > \epsilon t/2] \\ & \leq 4 \operatorname{Var}[Y]/\epsilon^2 t^2 \\ & < 4 t/(\epsilon^2 t^2) \end{array}$

– Set $t=20/\epsilon^2$ to make this Prob $\leq 1/5$

Completing the analysis

- We have shown
 Pr[F'₀ > (1+ε) F₀] < 1/5
- Can show $\Pr[F'_0 < (1-\varepsilon)F_0] < 1/5$ similarly
 - too few items hash below a certain value
- So Pr[(1- ε) $F_0 \le F'_0 \le (1+\varepsilon)F_0$] > 3/5 [Good estimate]
- Amplify this probability: repeat O(log 1/δ) times in parallel with different choices of hash function h
 - Take the median of the estimates, analysis as before

F₀ Issues

Space cost:

- Store t hash values, so $O(1/\epsilon^2 \log m)$ bits
- Can improve to $O(1/\epsilon^2 + \log m)$ with additional tricks

Time cost:

- Find if hash value $h(i) < v_t$
- Update v_t and list of t smallest if h(i) not already present
- Total time $O(\log 1/\epsilon + \log m)$ worst case

F₀ applications

- Many cases where we want to track number of distinct items
- Can also estimate size of subpopulations
 - E.g. "How many distinct Firefox users visited my network?"
 - Compute fraction of the t satisfying the predicate
 - Error is (additive) εF_0
- Compare F₀ to Bloom Filter
 - Bloom Filter: $\Omega(n)$ space to test membership of set of n items
 - F_0 estimation: $O(1/\epsilon^2)$ space to approximate size of set

Range Efficiency

Sometimes input is specified as a stream of ranges [a,b]

- [a,b] means insert all items (a, a+1, a+2 ... b)
- Trivial solution: just insert each item in the range
- Range efficient F₀ [Pavan, Tirthapura 05]
 - Start with an alg for F_0 based on pairwise hash functions
 - Key problem: track which items hash into a certain range
 - Dives into hash fns to divide and conquer for ranges
- Range efficient F₂ [Calderbank et al. 05, Rusu, Dobra 06]
 - Start with sketches for F_2 which sum hash values
 - Design new hash functions so that range sums are fast

F₀ **Exercises**

- Suppose the stream consists of a sequence of insertions and deletions.
 - Design an algorithm to approximate F_0 of the current set.
 - What happens when some frequencies are negative?
- Give an algorithm to find F₀ of the most recent W arrivals
- Use F₀ algorithms to approximate Max-dominance: given a stream of pairs (i,x(i)), approximate ∑_i max_{(i, x(i))} x(i)

Frequency Moments

- Intro to frequency distributions and Concentration bounds
- Count-Min sketch for F_{∞} and frequent items
- AMS Sketch for F₂
- Estimating F₀
- Extensions:
 - Higher frequency moments
 - Combined frequency moments

Higher Frequency Moments

■ F_k for k>2. Use a sampling trick [Alon et al 96]:

- Uniformly pick an item from the stream length 1...n
- Set r = how many times that item appears subsequently
- Set estimate $F'_k = n(r^k (r-1)^k)$
- $E[F'_k] = 1/n^*n^*[f_1^k (f_1-1)^k + (f_1-1)^k (f_1-2)^k + ... + 1^k-0^k] + ...$ = $f_1^k + f_2^k + ... = F_k$
- $Var[F'_k] \le 1/n^* n^{2*}[(f_1^k (f_1 1)^k)^2 + ...]$
 - Use various bounds to bound the variance by $k m^{1-1/k} F_k^2$
 - Repeat k m^{1-1/k} times in parallel to reduce variance
- Total space needed is O(k m^{1-1/k}) machine words
 - Not a sketch: does not distribute easily

Improvements

[Coppersmith and Kumar '04]: Generalize the F₂ approach

- E.g. For F_3 , set $p=1/\sqrt{m}$, and hash items onto $\{1-1/p, -1/p\}$ with probability $\{1/p, 1-1/p\}$ respectively.
- Compute cube of sum of the hash values of the stream
- Correct in expectation, bound variance $\leq O(\sqrt{mF_3^2})$
- Indyk, Woodruff '05, Bhuvangiri et al. '06]: Optimal solutions by extracting different frequencies
 - Use hashing to sample items and f's, combine to build estimator
 - Cost is O(m^{1-2/k} poly-log(m,n,1/ε)) space
- [Andoni Krauthgamer Onak 11]: Precision sampling via sketches
 - Recover frequencies at different precision to get optimal bounds

Combined Frequency Moments

Consider network traffic data: defines a communication graph

eg edge: (source, destination)

or edge: (source:port, dest:port)

Defines a (directed) multigraph

We are interested in the underlying (support)

- Want to focus on number of distinct communication pairs, not size of communication
- So want to compute moments of F₀ values...

Multigraph Problems

- Let G[i,j] = 1 if (i,j) appears in stream: edge from i to j. Total of m distinct edges
- Let $d_i = \sum_{j=1}^{n} G[i,j]$: degree of node i
- Find aggregates of d_i's:
 - Estimate heavy d's (people who talk to many)
 - Estimate frequency moments: number of distinct d_i values, sum of squares
 - Range sums of d_i's (subnet traffic)

F_{∞} (F_0) using CM-FM

- Find i's such that $d_i > \phi \sum_i d_i$ Finds the people that talk to many others
- Count-Min sketch only uses additions, so can apply:

Accuracy for $F_{\infty}(F_0)$

- Focus on point query accuracy: estimate d_i.
- Can prove estimate has only small bias in expectation
 - Analysis is similar to original CM sketch analysis, but now have to take account of F_0 estimation of counts
- Gives an bound of O(1/ε³ poly-log(n)) space:
 - The product of the size of the sketches
- Other combinations of functions require fresh analysis, eg.
 F₂(F₀), F₂(F₂) etc.

Exercises / Problems

- 1. (Research problem) What can be computed for other combinations of frequency moments, e.g. F_2 of F_2 values, etc.?
- 2. The F_2 algorithm uses the fact that +1/-1 values square to preserve F_2 but are 0 in expectation. Why won't it work to estimate F_4 with $g \rightarrow \{-1, +1, -i, +i\}$?
- (Research problem) Read, understand and simplify analysis for optimal F_k estimation algorithms
- 4. Take the sampling F_k algorithm and combine it with F_0 estimators to approximate F_k of node degrees
- Why can't we use the sketch approach for F₂ of node degrees? Show there the analysis breaks down

Distributed Issues

Sketches like these are easy to compute in distributed setting

- CM Sketch, AMS sketch: merge by adding sketches
- F₀ sketch: can merge and take bottom-k set of items
- Combined sketches also merge naturally
- Stronger property: these sketches are data-order independent
- Other questions remain:
 - When to merge?
 - How to deal with failure/loss?

Sketching Resources

- Sample implementations on web
 - Ad hoc, of varying quality
- Technical descriptions
 - Original papers
 - Surveys, comparisons
- (Partial) wikis and book chapters

- Wiki: sites.google.com/site/countminsketch/
- "Sketch Techniques for Approximate Query Processing"
 dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

L_p Sampling and Stream Verification

L_p Sampling: Sampling from Sketches

Sampling from Sketches

- Given distributed streams with positive and negative weights
- Want to sample based on the overall frequency distribution
 - Sample from support set of n possible items
 - Sample proportional to (absolute) weights
 - Sample proportional to some function of weights
- How to do this sampling effectively?
- Recent approach: L_p sampling

L_p Sampling

- **L**_p sampling: use sketches to sample i w/prob $(1\pm\epsilon) f_i^p / ||f||_p^p$
- "Efficient" solutions developed of size O(ε⁻² log² n)
 - [Monemizadeh, Woodruff 10] [Jowhari, Saglam, Tardos 11]
- L₀ sampling enables novel "graph sketching" techniques
 - Sketches for connectivity, sparsifiers [Ahn, Guha, McGregor 12]
- L₂ sampling allows optimal estimation of frequency moments
- Challenge: improve space efficiency of L_p sampling
 - Empirically or analytically

L₀ Sampling

- L_0 sampling: sample with prob $(1\pm\epsilon) f_i^0/F_0$
 - i.e., sample (near) uniformly from items with non-zero frequency
- General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]
 - Sub-sample all items (present or not) with probability p
 - Generate a sub-sampled vector of frequencies f_p
 - Feed f_p to a k-sparse recovery data structure
 - Allows reconstruction of f_p if $F_0 < k$
 - If f_p is k-sparse, sample from reconstructed vector
 - Repeat in parallel for exponentially shrinking values of p

Sampling Process

- Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16... 1/U
 - Let N = $F_0 = |\{i : f_i \neq 0\}|$
 - Want there to be a level where k-sparse recovery will succeed
 - At level p, expected number of items selected S is Np
 - Pick level p so that $k/3 < Np \le 2k/3$
- Chernoff bound: with probability exponential in k, $1 \le S \le k$
 - Pick k = O(log $1/\delta$) to get $1-\delta$ probability

k-Sparse Recovery

- Given vector x with at most k non-zeros, recover x via sketching
 - A core problem in compressed sensing/compressive sampling
- First approach: Use Count-Min sketch of x
 - Probe all U items, find those with non-zero estimated frequency
 - Slow recovery: takes O(U) time
- Faster approach: also keep sum of item identifiers in each cell
 - Sum/count will reveal item id
 - Avoid false positives: keep fingerprint of items in each cell
- Can keep a sketch of size O(k log U) to recover up to k items

Sum, $\sum_{i:h(i)=i} i$ Count, $\sum_{i:h(i)=i} x_i$ Fingerprint, $\sum_{i:h(i)=i} x_i r^i$

Uniformity

- Also need to argue sample is uniform
 - Failure to recover could bias the process
- Pr[i would be picked if k=n] = 1/F₀ by symmetry
- Pr[i is picked] = Pr[i would be picked if k=n \land S≤k] \ge (1- δ)/F₀
- So $(1-\delta)/N \le \Pr[i \text{ is picked}] \le 1/N$
- Sufficiently uniform (pick $\delta = \varepsilon$)

Application: Graph Sketching

- Given L₀ sampler, use to sketch (undirected) graph properties
- Connectivity: want to test if there is a path between all pairs
- Basic alg: repeatedly contract edges between components
- Use L₀ sampling to provide edges on vector of adjacencies
- Problem: as components grow, sampling most likely to produce internal links

Graph Sketching

- Idea: use clever encoding of edges
- Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i
- When node i and node j get merged, sum their L₀ sketches
 - Contribution of edge (i,j) exactly cancels out

- Only non-internal edges remain in the L₀ sketches
- Use independent sketches for each iteration of the algorithm
 - Only need O(log n) rounds with high probability
- Result: O(poly-log n) space per node for connectivity

Other Graph Results via sketching

K-connectivity via connectivity

- Use connectivity result to find and remove a spanning forest
- Repeat k times to generate k spanning forests F_1 , F_2 , ... F_k
- Theorem: G is k-connected if $\bigcup_{i=1}^{k} F_{i}$ is k-connected
- Bipartiteness via connectivity:
 - Compute c = number of connected components in G
 - Generate G' over $V \cup V'$ so $(u,v) \in E \Rightarrow (u, v') \in E'$, $(u', v) \in E'$
 - If G is bipartite, G' has 2c components, else it has c components
- Minimum spanning tree;
 Round edge weights to powers of (1+ε)
 Define n_i = number of components on edges lighter than (1+ε)ⁱ
 Exercise: weight of MST on rounded weights is Σ_i ε(1+ε)ⁱn_i

Application: F_k via L₂ Sampling

• Recall, $F_k = \sum_i f_i^k$

- L_2 sampling lets us sample f_i with probability f_i^2/F_2
 - Also estimate sampled f_i with relative error ε
- Estimator: $X = F_2 f_i^{k-2}$ (with estimates of F_2 , f_i)
 - Expectation: $E[X] = F_2 \sum_i f_i^{k-2} \cdot f_i^2 / F_2 = F_k$
 - Variance: Var[X] $\leq E[X^2] = \sum_i f_i^2 / F_2 (F_2 f_i^{k-2})^2 = F_2 F_{2k-2}$

Rewriting the Variance

- Want to express variance of $F_2 F_{2k-2}$ in terms of F_k
- Hölder's inequality: $\langle x, y \rangle \le ||x||_p ||y||_q$ for $1 \le p$, q with 1/p+1/q=1
 - Generalizes Cauchy-Shwarz inequality, where p=q=2.
- So pick p=k/(k-2) and q = k/2 for k > 2. Then $\langle 1^{n}, (f_{i})^{2} \rangle \leq \|1^{n}\|_{k/(k-2)} \|(f_{i})^{2}\|_{k/2}$ $F_{2} \leq n^{(k-2)/k} F_{k}^{2/k}$ (1)
- Also, since $\|\mathbf{x}\|_{p+a} \leq \|\mathbf{x}\|_p$ for any $p \geq 1$, a > 0
 - Thus $\|x\|_{2k-2} \leq \|x\|_k$ for $k \geq 2$
 - So $F_{2k-2} = \|f\|_{2k-2}^{2k-2} \le \|f\|_{k}^{2k-2} = F_{k}^{2-2/k}$ (2)
- Multiply (1) * (2) : $F_2 F_{2k-2} \le n^{1-2/k} F_k^2$
 - So variance is bounded by $n^{1-2/k} F_k^2$

F_k Estimation

For $k \ge 3$, we can estimate F_k via L_2 sampling:

- Variance of our estimate is $O(F_k^2 n^{1-2/k})$
- Take mean of $n^{1-2/k}\epsilon^{-2}$ repetitions to reduce variance
- Apply Chebyshev inequality: constant prob of good estimate
- Chernoff bounds: O(log 1/ δ) repetitions reduces prob to δ
- How to instantiate this?
 - Design method for approximate L₂ sampling via sketches
 - Show that this gives relative error approximation of f_i
 - Use approximate value of F₂ from sketch
 - Complicates the analysis, but bound stays similar

L₂ Sampling Outline

For each i, draw u_i uniformly in the range 0...1

- From vector of frequencies f, derive g so $g_i = f_i/u_i$
- Sketch g_i vector (can do this over distributed streams)

Sample: return (i, f_i) if there is unique i with $g_i^2 > t = F_2/\epsilon$ threshold

-
$$\Pr[g_i^2 > t \land \forall j \neq i : g_j^2 < t] = \Pr[g_i^2 > t] \prod_{j \neq i} \Pr[g_j^2 < t]$$

= $\Pr[u_i < \varepsilon f_i^2 / F_2] \prod_{j \neq i} \Pr[u_j > \varepsilon f_j^2 / F_2]$
= $(\varepsilon f_i^2 / F_2) \prod_{j \neq i} (1 - \varepsilon f_j^2 / F_2)$
 $\approx \varepsilon f_i^2 / F_2$

Probability of returning anything is not so big: $\sum_{i} \varepsilon f_{i}^{2}/F_{2} = \varepsilon$

- Repeat O($1/\epsilon \log 1/\delta$) times to improve chance of sampling

L₂ sampling continued

- Given (estimated) g_i s.t. $g_i^2 \ge F_2/\epsilon$, estimate $f_i = u_i g_i$
- Sketch size $O(\epsilon^{-1} \log n)$ means estimate of f_i^2 has error $(\epsilon f_i^2 + u_i^2)$
 - With high prob, no $u_i < 1/poly(n)$, and so $F_2(g) = O(F_2(f) \log n)$
 - Since estimated $f_i^2/u_i^2 \ge F_2/\epsilon$, $u_i^2 \le \epsilon f_i^2/F_2$
- Estimating f_i^2 with error εf_i^2 sufficient for estimating F_k
- Many details skipped...

L_p Sampling exercises

- 1. Work through details of sketch-based L_2 sampling for F_k estimation. Can the details be simplified?
- 2. (Research) The bound for F_k estimation is optimal in n (depends on n^{1-2/k}), but not ε (ε^{-4}). Can this be improved?
- 3. (Research) The graph sampling result only requires an arbitrary sample to be drawn. What is the best sketch for this?
- Design a graph sketch so that given a set S we can approximate cut(S), the number of edges in E ∩ (S × (V \ S))

Stream Verification: Checking the cloud with a stream

Outsourced Computation

- Current trend to 'outsource' computation
 - Cloud computing: Amazon EC2, Microsoft Azure...
 - Hardware support: multicore systems, graphics cards
- We provide data to a third party, they return an answer
- How can we be sure that the computation is correct?
 - Duplicate the whole computation ourselves?
 - Find some ad hoc sanity checks on the answer?
- This talk: construct protocols to prove the correctness
 - Protocols must be very low cost for the data owner (streaming)
 - Amount of information transmitted should not be too large

Streaming Proofs

Objective: prove integrity of the computed solution

- Not concerned with security: third party sees unencrypted data
- Prover provides "proof" of the correct answer
 - Ensure that "verifier" has very low probability of being fooled
 - Related to communication complexity Arthur-Merlin model, and Arithmetization, with additional streaming constraints

Problem Setting

Data is large, so is not stored in full by the verifier

- (Distributed) streaming model: verifier sees data in one pass
- Consider large graph data
 - Verifier sees graph edge by edge in no particular order
- Want to solve graph problems
 - Bipartite? Connected?
 - Max flow/min cut
 - Shortest s-t paths
 - Matchings and MST
 - Counting triangles

One Round Model

- One-round model [Chakrabarti, C, McGregor 09]
 - Define protocol with help function h over input length N
 - Maximum length of h over all inputs defines help cost, H
 - Verifier has V bits of memory to work in
 - Verifier uses randomness so that:
 - For all help strings, $Pr[output \neq f(x)] \le \delta$
 - Exists a help string so that $Pr[output = f(x)] \ge 1-\delta$
 - H = 0, V = N is trivial; but H = N, V = polylog N is not

Basic Tool: Fingerprints

- Fingerprints allow us to test if two vectors (matrices, multisets) are equal, with high probability
- Pick a prime p, and a random $\alpha \in [p]$
 - Given vector x of dimension q
 - Compute $f(x) = \sum_i x_i \alpha^i \mod p$
 - Pr[f(x) = f(y) | $x \neq y$] $\leq q/p$

- Linearity: f can be computed incrementally as x is observed
 - E.g. if x is a stream of edges, can fingerprint multiset of nodes

Warm Up: Bipartiteness

- Prove a graph is bipartite: exhibit a bipartition
 - List each edge with different labels on each node
- Ensure consistent labels via fingerprinting
 - Fingerprint the (multi)set (node, label, degree)
 - Compare to fingerprint of claimed labeling
- Prove a graph is not bipartite: exhibit an odd cycle
 - List all other edges, so fingerprints can be compared
- Either way, size of proof is O(|E|) = O(m)
 - Verifier only needs to store O(1) fingerprints of O(log n) bits
- Similar arguments for other problems, via (lots of) fingerprints

General Simulation Argument

General simulation argument:

Given a (deterministic) algorithm in the RAM model that solves a problem in time t(m,n), there is a protocol with proof size O(m + t(m,n)), using O(1) fingerprints

- Main idea: use memory checking techniques
- Verifier runs the algorithm, proof provides result of each memory access
- Verifier uses fingerprints of reads and writes to memory to ensure consistency
 - Every memory access is a read followed by a write

Applications of Simulation Argument

Immediately provides:

- O(m + n log n) size proof for single-source shortest paths
- O(n³) size proof for all-pairs shortest paths
- Minimum spanning tree has an O(n) sized proof
 - Based on linear time algorithms to verify that a tree is minimal
- Limitation: small space but large proof
 - Can we reduce proof sizes by using slightly more space?

Streaming ILP problem

Stream defines (non-zero) entries of matrix A, vectors b and c

- Updates "add k to entry (i,j) of A" in arbitrary order
- Goal: prove x satisfies min $\{c^T x | Ax \le b\}$
- Use primal-duality and matrix-vector multiplication:
 - 1. Provide primal-feasible solution x
 - 2. For each row i of A:

List x_i , c_i , b_i to find $c_i x_i$

List non-zeros A_i and corresponding entries of x to find A_ix Verifier uses fingerprints ensure consistency

- 3. Repeat for dual-feasible solution y s.t. $A^{T}y \leq c$
- 4. Accept if $c^T x = b^T y$

Application to Graph Streams

- Applies to Totally Unimodular Integer Programs (TUM IPs)
 - Optimality when primal=dual for LP relaxation
- Gives protocols for (flow) problems formulated as TUM IPs:
 - Max-flow, min-cut
 - Minimum-weigh bipartite matching
 - Shortest s-t path
- Size of proof = |A| = size of constraints = |E|
 - Verifier only remembers a constant number of fingerprints
- Can show lower bound of n² on (HV) product
 - Via reduction to canonical "hard" problem of INDEX
- Can we increase space to decrease proof size?

Inner Product Computation

- Given vectors a, b, defined in the stream, want to compute a·b
- Inner product appears in many problems
 - Core computation in data streams
 - Requires $\Omega(N)$ space to compute in traditional models
- Results: for h,v s.t. (hv) > N, there exists a protocol with proof size O(h log m), and space O(v log m) to compute inner product
 - Lower bounds: $HV = \Omega(N)$ necessary for exact computation

Inner Product Protocol

Map [N] to h × v array

- Interpolate entries in array as polynomials a(x,y), b(x,y)
- Verifier picks random r, evaluates a(r, j) and b(r,j) for j ∈ [v]
- Helper sends $s(x) = \sum_{j \in [v]} a(x, j)b(x, j)$ (degree h)
 - Verifier checks $s(r) = \sum_{j \in [v]} a(r,j)b(r,j)$
 - Output $\mathbf{a} \cdot \mathbf{b} = \sum_{i \in [h]} \mathbf{s}(i)$ if test passed
- Probability of failure small if evaluated over large enough field
 - A "Low Degree Extension" / arithmetization technique

3	7	1	2
0	8	5	9
1	1	1	0

Streaming Computation

- Must evaluate a(r,j) incrementally as a() is defined by stream
- Structure of polynomial means updates to (w,z) cause

 $a(r,j) \leftarrow a(r,j) + p_{w,z}(r,j)$

where $p_{w,z}(x,y) = \prod_{i \in [h] \setminus \{w\}} (x-i)(w-i)^{-1} \cdot \prod_{j \in [v] \setminus \{z\}} (y-j)(z-j)^{-1}$

- p is a Lagrange polynomial corresponding to an impulse at (w,z)
- Can be computed quickly, using appropriate precomputed look-up tables
- Evaluation is linear: can be computed over distributed data

Matrix-Vector Computation

- For Linear Programming, need to verify matrix-vector product
 - Equivalent to multiple vector-vector products
 - Use the fact that one vector is held constant

- Central idea: "simulate" the multiple vector-vector protocols
 - Don't explicitly store the evaluations of a_i(r,j) for all i
 - Instead, keep a fingerprint of the evaluations
 - Evaluate the polynomials $s_i(x)$ at r, fingerprint the result vector
- Scale and add fingerprints of a_i(r,j)
 - By linearity, $f(\sum_{j} a_i(r,j) b(r,j)) = \sum_{j} b(r,j) f(a_i(r,j))$
 - Accept if the two fingerprints match— Implies whp that *all* the tests $s_i(r) = \sum_j a_i(r,j) b(r,j)$ passed

Matrix-Vector Bounds

"Tradeoff" to verify Ax=b, for n x n matrix A

- Size of proof = $O(n^{1+\alpha})$ for any $0 < \alpha < 1$
- Space of verifier = $O(n^{1-\alpha})$
- Applies to a variety of problems:
 - Protocols for dense LPs
 - Connectivity
 - Max bipartite matching

Connectivity Tradeoff

- If graph is connected, can easily verify a spanning tree T
- Challenge: show that T C E !
 - Outline: show $\langle T, E \rangle = |n|$
 - Inner product: $n^{1+\alpha}$ proof, $n^{1-\alpha}$ space

- If graph is not connected, prover lists connected component C
- Challenge: verify that no edges leave C: $E \cap (C \times (V / C)) = 0$
 - Use matrix-vector protocol to compute EC
 - Check that support set of EC is C
 - Cost bounded: $n^{1+\alpha}$ proof, $n^{1-\alpha}$ space

Multi-Round Protocols

- Advantage of one-round protocols: Prover can provide proof without direct interaction (e.g. publish + go offline)
- Disadvantage: Resources still polynomial in input size
- Multi-round protocol can improve exponentially [C,Thaler,Yi 12]:
 - Prover and Verifier follow communication protocol
 - H now denotes upper bound on total communication
 - V is verifier's space, study tradeoff between H and V as before

General Theorems

Universal Arguments works in this model [Kilian 92]

- Implies computationally sound polylog n sized proof with polylog n space for all of NP
- "Interactive Proofs for Muggles" [Goldwasser et al 08]
 - Implies statistically sound polylog n size proof with polylog n space for all of NP
- In both cases, verifier computes LDE of input data
- Challenge: these protocols are potentially unwieldy (e.g. Universal Arguments depends on building a PCP)
 - Can we find cheaper solutions for certain problems?

Multi-Round Index Protocol

- Basic idea: V keeps hash of whole stream, use helper to help check hash of stream containing claimed answer
 - Verifier imposes a binary tree, and a (secret) hash for each level
 - Round 1: Prover sends answer, and its sibling
 Verifier sends hash for leaf level
 - Round 2: Prover sends hash of answer's parent's sibling
 Verifier sends hash for next level...
 - Round log N: Verifier checks root hash
- Correctness: Prover can only cheat via hash collisions—but doesn't know hash function until too late to cheat
 - Small chance over log N levels

Multi-Round Index Protocol

Challenge: Verifier must compute hash of root in small space

- h(root) $= h_{\log N}(h_{\log N-1}(\text{left half}), h_{\log N-1}(\text{right half}))$ $= h_{\log N}(h_{\log N} \dots h_2 (h_1 (x_1, x_2) \dots)))$
- Solution: appropriate choice of each hash function
 - $h_i(x, y) = x + r_i y \mod p$ gives sufficient security (1/p log N error)
 - Then h(root) = \sum_{i} ($w_i \prod_{j=1}^{\log N} r_j^{\text{bit}(j,i)}$) where bit(j,i) = i'th bit of j
 - So each update requires only log N field multiplications
- Final bounds: O(log² N) communication, O(log² N) space

Multi-Round Frequency Moments

Now index data using $\{0,1\}^d$ in $d = \log N$ dimensional space

- Verifier picks one $(r_1 \dots r_d) \in [p]^d$, and evaluates $f^k(r_1, r_2, \dots r_d)$
- Round 1: Prover sends $g_1(x_1) = \sum_{x_2...x_d} f^k(x_1, x_2...x_d)$, V sends r_1
- Round i: Prover sends $g_i(x_i) = \sum_{x_{i+1} \dots x_d}^{-1} f^k(r_1, r_2 \dots r_{i-1}, x_i, x_{i+1} \dots x_d)$ Verifier checks $g_{i-1}(r_{i-1}) = g_i(0) + g_i(1)$, sends r_i
- Round d: Prover sends $g_d(x_d) = f^k(r_1, \dots, r_{d-1}, x_d)$ Verifier checks $g_d(r_d) = f^k(r_1, r_2, \dots, r_d)$

371208591110

37

208591110...

Multi-Round Frequency Moments

- Correctness: helper can't cheat last round without knowing r_d
- Then can't cheat round i without knowing r_i...
 - Similar to protocols from "traditional" Interactive Proofs
- Inductive proof, conditioned on each later round succeeding
- Bounds: O(k² log N) total communication, O(k log N) space
- V's incremental computation possible in small space, via $\prod_{j=1}^{d} (r_j + bit(j,i)(1-2r_j))$
- Intermediate polynomials relatively cheap for helper to find

Experimental Results

Extensions

- Distributed/parallel versions of these protocols
 - Can compute proofs in MapReduce, multicore and GPU models
- Lower bounds for multi-round versions of the protocols
 - May need new communication complexity models
- Use these protocols
 - Protocols seem practical, but are they compelling?
 - For what problems are protocols most needed?

Continuous Distributed Monitoring and Lower Bounds

Distributed Monitoring

There are many scenarios where we need to track events:

- Network health monitoring within a large ISP
- Collecting and monitoring environmental data with sensors
- Observing usage and abuse of distributed data centers
- All can be abstracted as a collection of observers who want to collaborate to compute a function of their observations

From this we generate the Continuous Distributed Model

Continuous Distributed Model

- Site-site communication only changes things by factor 2
- Goal: Coordinator continuously tracks (global) function of streams
 - Achieve communication $poly(k, 1/\epsilon, log n)$
 - Also bound space used by each site, time to process each update

Challenges

- Monitoring is Continuous...
 - Real-time tracking, rather than one-shot query/response
- ...Distributed...
 - Each remote site only observes part of the global stream(s)
 - Communication constraints: must minimize monitoring burden
- ...Streaming...
 - Each site sees a high-speed local data stream and can be resource (CPU/memory) constrained
- ...Holistic...
 - Challenge is to monitor the complete global data distribution
 - Simple aggregates (e.g., aggregate traffic) are easier

Baseline Approach

- Sometimes periodic polling suffices for simple tasks
 - E.g., SNMP polls total traffic at coarse granularity
- Still need to deal with holistic nature of aggregates
- Must balance polling frequency against communication
 - Very frequent polling causes high communication, excess battery use in wireless devices
 - Infrequent polling means delays in observing events
- Need techniques to reduce communication while guaranteeing rapid response to events

Variations in the model

- Multiple streams define the input A
- Given function f, several types of problem to study:
 - Threshold Monitoring: identify when $f(A) > \tau$ Possibly tolerate some approximation based on $\epsilon \tau$
 - Value Monitoring: always report accurate approximation of f(A)
 - Set Monitoring: f(A) is a set, always provide a "close" set
- Direct communication between sites and the coordinator
 - Other network structures possible (e.g., hierarchical)

Outline

- 1. The Continuous Distributed Model
- 2. How to count to 10
- 3. The geometric approach
- 4. A sample of sampling
- 5. Prior work and future directions

The Countdown Problem

- A first abstract problem that has many applications
- Each observer sees events
- Want to alert when a total of τ events have been seen
 - Report when more than 10,000 vehicles have passed sensors
 - Identify the 1,000,000th customer at a chain of stores
- Trivial solution: send 1 bit for each event, coordinator counts
 - O(τ) communication
 - Can we do better?

A First Approach

- One of k sites must see τ/k events before threshold is met
- So each site counts events, sends message when τ/k are seen
- Coordinator collects current count n_i from each site
 - Compute new threshold $\tau' = \tau \sum_{i=1}^{k} n_i$
 - Repeat procedure for τ' until $\tau' < k$, then count all events
- Analysis: $\tau > \tau'/(1-1/k) > \tau''/(1-1/k)^2 > ...$
 - Number of thresholds = $\log(\tau/k) / \log(1/(1-1/k)) = O(k \log(\tau/k))$
 - Total communication: $O(k^2 \log (\tau/k))$ [each update costs O(k)]
- Can we do better?

A Quadratic Improvement

- Observation: O(k) communication per update is wasteful
- Try to wait for more updates before collecting
- Protocol operates over log (τ/k) rounds [C.,Muthukrishnan, Yi 08]
 - In round j, each site waits to receive $\tau/(2^{j} k)$ events
 - Subtract this amount from local count n_i, and alert coordinator
 - Coordinator awaits k messages in round j, then starts round j+1
 - Coordinator informs all sites at end of each round
- Analysis: k messages in each round, log (τ/k) rounds
 - Total communication is $O(k \log (\tau/k))$
 - Correct, since total count can't exceed τ until final round

Approximate variation

- Sometimes, we can tolerate approximation
- Only need to know if threshold τ is reached approximately
- So we can allow some bounded uncertainty:
 - Do not report when count < (1- ε) τ
 - Definitely report when count > τ
 - In between, do not care
- Previous protocol adapts immediately:
 - Just wait until distance to threshold reaches ετ
 - Cost of the protocol reduces to O(k log $1/\epsilon$) (independent of τ)

Extension: Randomized Solution

- Cost is high when k grows very large
- Randomization reduces this dependency, with parameter ε
- Now, each site waits to see $O(\epsilon^2 \tau/k)$ events
 - Roll a die: report with probability 1/k, otherwise stay silent
 - Coordinator waits to receive $O(1/\epsilon^2)$ reports, then terminates
- Analysis: in expectation, coordinator stops after $\tau(1-\epsilon/2)$ events
 - With Chernoff bounds, show that it stops before τ events
 - And does not stop before $\tau(1-\epsilon)$ events
- Gives a randomized, approximate solution: uncertainty of $\varepsilon \tau$

Outline

- 1. The Continuous Distributed Model
- 2. How to count to 10
- 3. The geometric approach
- 4. A sample of sampling
- 5. Prior work and future directions

General Non-linear Functions

- For general, non-linear f(), the problem becomes a lot harder!
 - E.g., information gain over global data distribution
- Non-trivial to decompose the global threshold into "safe" local site constraints
 - E.g., consider N=(N₁+N₂)/2 and f(N) = 6N N² > 1 Tricky to break into thresholds for f(N₁) and f(N₂)

The Geometric Approach

- A general purpose geometric approach [Scharfman et al.'06]
 - Each site tracks a local statistics vector v_i (e.g., data distribution)
- Global condition is $f(v) > \tau$, where $v = \sum_i \lambda_i v_i$ ($\sum_i \lambda_i = 1$)
 - V = convex combination of local statistics vectors
- All sites share estimate $e = \sum_i \lambda_i v'_i$ of v based on latest update v'_i from site i
- Each site i tracks its drift from its most recent update Δv_i = v_i-v_i'

Covering the convex hull

- Key observation: $v = \sum_i \lambda_i \cdot (e + \Delta v_i)$ (a convex combination of "translated" local drifts)
- v lies in the convex hull of the (e+∆v_i) vectors
- Convex hull is completely covered by spheres with radii ||∆v_i/2||₂ centered at e+∆v_i/2
- Each such sphere can be constructed independently

Monochromatic Regions

- Monochromatic Region: For all points x in the region f(x) is on the same side of the threshold (f(x) > τ or f(x) ≤ τ)
- Each site independently checks its sphere is monochromatic
 - Find max and min for f() in local sphere region (may be costly)
 - Broadcast updated value of v_i if not monochrome

Restoring Monochomicity

• After broadcast, $\|\Delta v_i\|_2 = 0 \implies$ Sphere at i is monochromatic

Restoring Monochomicity

- After broadcast, $\|\Delta v_i\|_2 = 0 \implies$ Sphere at i is monochromatic
 - Global estimate e is updated, which may cause more site update broadcasts
- Coordinator case: Can allocate local slack vectors to sites to enable "localized" resolutions
 - Drift (=radius) depends on slack (adjusted locally for subsets)

Extension: Transforms and Shifts

Subsequent extensions further reduce cost [Scharfman et al. 10]

- Same analysis of correctness holds when spheres are allowed to be ellipsoids
- Additional offset vectors can be used to increase radius when close to threshold values
- Combining these observations allows additional cost savings

Outline

- 1. The Continuous Distributed Model
- 2. How to count to 10
- 3. The geometric approach
- 4. A sample of sampling
- 5. Prior work and future directions

Drawing a Sample

- A basic 'set monitoring' problem is to draw a uniform sample
- Given inputs of total size N, draw a sample of size s
 - Uniform over all subsets of size s
- Overall approach:
 - Define a general sampling technique amenable to distribution
 - Bound the cost
 - Extend to sliding windows

Binary Bernoulli Sampling

- Always sample with probability p = 2⁻ⁱ
- Randomly pick i bits, each of which is 0/1 with probability ½
- Select item if all i random bits are 0
- (Conceptually) store the random bits for each item
 - Can easily pick more random bits if the sampling rate decreases

Sampling Protocol

- Protocol based on [C., Muthukrishnan, Yi, Zhang 10]
- In round i, each site samples with p = 2⁻ⁱ
 - Sampled items are sent to the coordinator
 - Coordinator picks one more random bit
 - End round i when coordinator has s items with (i+1) zeros
 - Coordinator informs each site that a new round has started
 - Coordinator picks extra random bits for items in its sample

Protocol Costs

Correctness: coordinator always has (at least) s items

- Sampled with the same probability p
- Can subsample to reach exactly s items
- Cost: each round is expected to send O(s) items total
 - Can bound this with high probability via Chernoff bounds
 - Number of rounds is similarly bounded as O(log N)
 - Communication cost is O((k+s) log N)
- Lower bound on communication cost of Ω(k + s log N)
 - At least this many items are expected to appear in the sample
 - $O(k \log_{k/s} N + s \log N)$ upper bound by adjusting probabilities

Simplified Protocol

Can simplify the protocol further [Tirthapura, Woodruff 11]:

- Site j generates random tag u_i, sends if u_i < local threshold p_i
- Coordinator receives sampled item, tests u_i against local p value
- Set p so there are at most s items with tag less than p
- Inform site of current p value, which updates p_i
- Prove correctness by matching to previous algorithm
 - Show simplified protocol never sends more than round-based

Extension: Sliding Window

- Extend to sliding windows: only sample from last T arrivals
- Key insight: can break window into 'arriving' and 'departing'
 - Use multiple instances of Countdown protocol to track expiries
- Cost of such a protocol is O(ks log (W/s))
 - Near-matching $\Omega(ks \log(W/ks))$ lower bound

Outline

- 1. The Continuous Distributed Model
- 2. How to count to 10
- 3. The geometric approach
- 4. A sample of sampling
- 5. Prior work and future directions

Early Work

Continuous distributed monitoring arose in several places:

- Networks: Reactive monitoring [Dilman Raz 01]
- Databases: Distributed triggers [Jain et al. 04]
- Initial work on tracking multiple values
 - "Adaptive Filters" [Olston Jiang Widom 03]
 - Distributed top-k [Babcock Olston 03]

Prediction Models

Prediction further reduces cost [C, Garofalakis, Muthukrishnan, Rastogi 05]

Combined with approximate (sketch) representations

Problems in Distributed Monitoring

- Much interest in these problems in TCS and Database areas
- Many specific functions of (global) data distribution studied:
 - Set expressions [Das Ganguly Garofalakis Rastogi 04]
 - Quantiles and heavy hitters [C, Garofalakis, Muthukrishnan, Rastogi 05]
 - Number of distinct elements [C., Muthukrishnan, Zhuang 06]
 - Conditional Entropy [Arackaparambil, Bratus, Brody, Shubina 10]
 - Spectral properties of data matrix [Huang et al. 06]
 - Anomaly detection in networks [Huang et al. 07]
- Track functions only over sliding window of recent events
 - Samples [C, Muthukrishnan, Yi, Zhang 10]
 - Counts and frequencies [Chan Lam Lee Ting 10]

Other Work

Many open problems remain in this area

- Improve bounds for previously studied problems
- Provide bounds for other important problems
- Give general schemes for larger classes of functions
- Much ongoing work
 - See EU-support LIFT project, lift-eu.org
- Two specific open problems:
 - Develop systems and tools for continuous distributed monitoring
 - Provide a deeper theory for continuous distributed monitoring

Monitoring Systems

- Much theory developed, but less progress on deployment
- Some empirical study in the lab, with recorded data
- Still applications abound: Online Games [Heffner, Malecha 09]
 - Need to monitor many varying stats and bound communication

at&t

at&t

Theoretical Foundations

- "Communication complexity" studies lower bounds of distributed one-shot computations
- Gives lower bounds for various problems, e.g.,
 count distinct (via reduction to abstract problems)
- Need new theory for continuous computations
 - Based on info. theory and models of how streams evolve?
 - Link to distributed source coding or network coding?

Distributed Monitoring Summary

- Continuous distributed monitoring is a natural model
- Captures many real world applications
- Much non-trivial work in this model
- Much work remains to do!
- Longer survey:

dimacs.rutgers.edu/~graham/pubs/papers/cdsurvey.pdf

References (1)

[Babcock, Olston 03] B. Babcock and C. Olston. Distributed top-k monitoring. In ACM SIGMOD Intl. Conf. Management of Data, 2003.

- [Chan Lam Lee Ting 10] H.-L. Chan, T.-W. Lam, L.-K. Lee, and H.-F. Ting. Continuous monitoring of distributed data streams over a time-based sliding window. In Symp. Theoretical Aspects of Computer Science, 2010.
- [Cormode, Garofalakis '05] G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed approximate query tracking. In Proceedings of the International Conference on Very Large Data Bases, 2005.
- [Cormode Garofalakis, Muthukrishnan Rastogi 05] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates in a networked world: Distributed tracking of approximate quantiles. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2005.
- [C., Muthukrishnan, Zhuang 06] G. Cormode, S. Muthukrishnan, and W. Zhuang. What's different: Distributed, continuous monitoring of duplicate resilient aggregates on data streams. In IEEE Intl. Conf. Data Engineering, 2006.
- [Cormode, Muthukrishnan, Yi 08] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed, functional monitoring. In ACM-SIAM Symp. Discrete Algorithms, 2008.

References (2)

- [Cormode, Muthukrishnan, Yi, Zhang, 10] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. Optimal sampling from distributed streams. In ACM Principles of Database Systems, 2010.
- [Das Ganguly Garofalakis Rastogi 04] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed Set-Expression Cardinality Estimation. In Proceedings of VLDB, 2004.
- [Dilman, Raz 01] M. Dilman, D. Raz. Efficient Reactive Monitoring. In IEEE Infocom, 2001.
- [Heffner, Malecha 09] K. Heffner and G. Malecha. Design and implementation of generalized functional monitoring. www.people.fas.harvard.edu/~gmalecha/proj/funkymon.pdf, 2009.
- [Huang et al. 06] L. Huang, X. Nguyen, M. Garofalakis, M. Jordan, A. Joseph, and N. Taft. Distributed PCA and Network Anomaly Detection. In NIPS, 2006.
- [Huang et al. 07] L. Huang, M. N. Garofalakis, A. D. Joseph, and N. Taft. Communication-efficient tracking of distributed cumulative triggers. In ICDCS, 2007.
- [Jain et al. 04] A. Jain, J.M.Hellerstein, S. Ratnasamy, D. Wetherall. A Wakeup Call for Internet Monitoring Systems: The Case for Distributed Triggers. In Proceedings of HotNets-III, 2004.
- [Kerlapura et al. 06] R. Kerlapura, G. Cormode, and J. Ramamirtham. Communication-efficient distributed monitoring of thresholded counts. In ACM SIGMOD, 2006.

References (3)

[Olston, Jiang, Widom 03] C. Olston, J. Jiang, J. Widom. Adaptive Filters for Continuous Queries over Distributed Data Streams. In ACM SIGMOD, 2003.

[Sharfman et al. 06] I. Sharfman, A. Schuster, D. Keren: A geometric approach to monitoring threshold functions over distributed data streams. SIGMOD Conference 2006: 301-312

- [Sharfman et al. 10] I. Sharfman, A. Schuster, and D. Keren. Shape-sensitive geometric monitoring. In ACM Principles of Database Systems, 2010.
- [Slepian, Wolf 73] D. Slepian, J. Wolf. Noiseless coding of correlated information sources. IEEE Transactions on Information Theory, 19(4):471-480, July 1973.

Distributed Streaming Lower Bounds

Streaming Lower Bounds

- Lower bounds for data streams
 - Communication and information complexity bounds
 - Simple reductions
 - Hardness of Gap-Hamming problem
 - Reductions to Gap-Hamming

Lower Bounds

- So far, have seen many examples of things we can do in streaming models
- What about things we can't do?
- What's the best we could achieve for things we can do?
- Will show lower bounds for (distributed) data streams based on communication complexity

Streaming As Communication

- Imagine Alice processing a single stream
- Then take the whole working memory, and send to Bob
- Bob continues processing the remainder of the stream

Streaming As Communication

- Suppose Alice's part of the stream corresponds to string x, and Bob's part corresponds to string y...
- ...and that computing the function on the stream corresponds to computing f(x,y)...
- ...then if f(x,y) has communication complexity Ω(g(n)), then the streaming computation has a *space lower bound* of Ω(g(n))
- Proof by contradiction:

If there was an algorithm with better space usage, we could run it on x, then send the memory contents as a message, and hence solve the communication problem

Deterministic Equality Testing

- Alice has string x, Bob has string y, want to test if x=y
- Consider a deterministic (one-round, one-way) protocol that sends a message of length m < n
- There are 2^m possible messages, so some strings must generate the same message: this would cause error
- So a deterministic message (sketch) must be $\Omega(n)$ bits
 - In contrast, we saw a randomized sketch of size O(log n)

Hard Communication Problems

INDEX: x is a binary string of length n
 y is an index in [n]
 Goal: output x[y]
 Result: (one-way) (randomized) communication complexity of
 INDEX is Ω(n) bits

DISJ: x and y are both length n binary strings
 Goal: Output 1 if ∃i: x[i]=y[i]=1, else 0
 Result: (multi-round) (randomized) communication complexity of DISJ (disjointness) is Ω(n) bits

Hardness of INDEX

- Show hardness of INDEX via Information Complexity argument
 - Makes extensive use of Information Theory
- Entropy of random variable X: $H(X) = -\sum_{x} Pr[X=x] lg Pr[X=x]$
 - (Expected) information (in bits) gained by learning value of X
 - If X takes on at most N values, $H(X) \le Ig N$
- Conditional Entropy of X given Y: $H(X|Y) = \sum_{y} Pr[y] H[X|Y=y]$
 - (Expected) information (bits) gained by learning value of X given Y
- Mutual Information: I(X : Y) = I(Y : X) = H(X) H(X | Y)
 - Information (in bits) shared by X and Y
 - If X, Y are independent, I(X : Y) = 0 and $I(XY : Z) \ge I(X : Z) + I(Y : Z)$

Information Cost

- Use Information Theoretic properties to lower bound communication complexity
- Suppose Alice and Bob have random inputs X and Y
- Let M be the (random) message sent by Alice in protocol P
- The cost of (one-way) protocol P is cost(P) = max |M|
 - Worst-case size of message (in bits) sent in the protocol
- Define information cost as icost(P) = I(M : X)
 - The information conveyed about X in M
 - icost(P) = I(M : X) = H(M) H(M | X) \leq H(M) \leq cost(P)

Information Cost of INDEX

- Give Alice random input X = n uniform random bits
- Given protocol P for INDEX, Alice sends message M(X)
- Give Bob input i. He should output X_i
- icost(P) = $I(X_1 X_2 ... X_n : M)$ ≥ $I(X_1 : M) + I(X_2 : M) + ... + I(X_n : M)$
- Now consider the mutual information of X_i and M
 - Have reduced the problem to n instances of a simpler problem

Fano's Inequality

- When forming estimate X' from X given (message) M, where X, X' have k possible values, let E denote X ≠ X'. We have: H(E) + Pr[E] log(k-1) ≥ H(X | M) where H(E) = -Pr[E]lg Pr[E] - (1-Pr[E]) lg(1-Pr[E])
- Here, k=2, so we get $I(X : M) = H(X) H(X | M) \ge H(X) H(E)$
 - H(X) = 1. If Pr[E]= δ , we have H(E) < $\frac{1}{2}$ for δ <0.1
 - Hence $I(X_i : M) > \frac{1}{2}$
- Thus $cost(P) \ge icost(P) > \frac{1}{2} n$ if P succeeds w/prob $1-\delta$
 - Protocols for **INDEX** must send $\Omega(n)$ bits

Outline for DISJOINTNESS hardness

- Hardness for **DISJ** follows a similar outline
- Reduce to n instances of the problem "AND"
 - "AND" problem: test whether $X_i = Y_i = 1$
- Show that the information cost of **DISJ** protocol is sufficient to solve all n instances of **AND**
- Show that the information cost of each instance is $\Omega(1)$
- Proves that communication cost of DISJ is Ω(1)
 - Even allowing multiple rounds of communication

Simple Reduction to Disjointness

 $y: 0 \ 0 \ 0 \ 1 \ 1 \ 0 \qquad \longrightarrow \quad 4, \ 5$

- **F** $_{\infty}$: output the highest frequency in a stream
- Input: the two strings x and y from disjointness instance
- Stream: if x[i]=1, then put i in stream; then same for y
 - A streaming reduction (compare to polynomial-time reductions)
- Analysis: if $F_{\infty}=2$, then intersection; if $F_{\infty}\leq 1$, then disjoint.
- Conclusion: Giving exact answer to F_{∞} requires $\Omega(N)$ bits
 - Even approximating up to 50% relative error is hard
 - Even with randomization: **DISJ** bound allows randomness

Simple Reduction to Index

- F₀: output the number of items in the stream
- Input: the strings x and index y from INDEX
- Stream: if x[i]=1, put i in stream; then put y in stream
- Analysis: if $(1-\varepsilon)F'_0(x \cup y) > (1+\varepsilon)F'_0(x)$ then x[y]=1, else it is 0
- **Conclusion**: Approximating F_0 for $\varepsilon < 1/N$ requires $\Omega(N)$ bits
 - Implies that space to approximate must be $\Omega(1/\epsilon)$
 - Bound allows randomization

Hardness Reduction Exercises

Use reductions to **DISJ** or **INDEX** to show the hardness of:

- 1. Frequent items: find all items in the stream whose frequency $> \phi N$, for some ϕ .
- Sliding window: given a stream of binary (0/1) values, compute the sum of the last N values
 - Can this be approximated instead?
- 3. Min-dominance: given a stream of pairs (i,x(i)), approximate $\sum_{i} \min_{(i, x(i))} x(i)$
- Rank sum: Given a stream of (x,y) pairs and query (p,q) specified after stream, approximate |{(x,y)| x<p, y<q}|

Streaming Lower Bounds

- Lower bounds for data streams
 - Communication complexity bounds
 - Simple reductions
 - Hardness of Gap-Hamming problem
 - Reductions to Gap-Hamming

Gap Hamming

Gap-Hamming communication problem:

- Alice holds $x \in \{0,1\}^N$, Bob holds $y \in \{0,1\}^N$
- Promise: Ham(x,y) is either $\leq N/2 \sqrt{N}$ or $\geq N/2 + \sqrt{N}$
- Which is the case?
- Model: one message from Alice to Bob
- Sketching upper bound: need relative error $\varepsilon = \sqrt{N/F_2} = 1/\sqrt{N}$
 - Gives space $O(1/\epsilon^2) = O(N)$

Requires Ω(N) bits of one-way randomized communication [Indyk, Woodruff'03, Woodruff'04, Jayram, Kumar, Sivakumar '07]

Hardness of Gap Hamming

Reduction starts with an instance of INDEX

- Map string x to u by $1 \rightarrow +1, 0 \rightarrow -1$ (i.e. u[i] = 2x[i] -1)
- Assume both Alice and Bob have access to public random strings r_i, where each bit of r_i is iid {-1, +1}
- Assume w.l.o.g. that length of string n is odd (important!)
- Alice computes $a_i = sign(r_i \cdot u)$
- Bob computes b_i = sign(r_i[y])
- Repeat N times with different random strings, and consider the Hamming distance of a₁... a_N with b₁ ... b_N
 - Argue if we solve Gap-Hamming on (a, b), we solve INDEX

Probability of a Hamming Error

- Consider the pair $a_j = sign(r_j \cdot u)$, $b_j = sign(r_j[y])$
- Let $w = \sum_{i \neq y} u[i] r_j[i]$
 - w is a sum of (n-1) values distributed iid uniform {-1,+1}
- Case 1: $w \neq 0$. So $|w| \ge 2$, since (n-1) is even
 - so sign(a_j) = sign(w), independent of x[y]
 - Then $Pr[a_j \neq b_j] = Pr[sign(w) \neq sign(r_j[y])] = \frac{1}{2}$
- Case 2: w = 0.
 - So $a_i = sign(r_i \cdot u) = sign(w + u[y]r_i[y]) = sign(u[y]r_i[y])$
 - Then $Pr[a_j \neq b_j] = Pr[sign(u[y]r_j[y]) = sign(r_j[y])]$
 - This probability is 1 is u[y]=+1, 0 if u[y]=-1
 - Completely biased by the answer to INDEX

Finishing the Reduction

- So what is Pr[w=0]?
 - w is sum of (n-1) iid uniform {-1,+1} values
 - Exercise: $Pr[w=0] = 2^{-n}(n \text{ choose } n/2) = c/\sqrt{n}$, for some constant c
- Do some probability manipulation:
 - $Pr[a_j = b_j] = \frac{1}{2} + \frac{c}{2}\sqrt{n}$ if x[y]=1
 - $Pr[a_j = b_j] = \frac{1}{2} \frac{c}{2}\sqrt{n}$ if x[y]=0
- Amplify this bias by making strings of length N=4n/c²
 - Apply Chernoff bound on N instances
 - With prob>2/3, either Ham(a,b)>N/2 + \sqrt{N} or Ham(a,b)<N/2 \sqrt{N}
- If we could solve Gap-Hamming, could solve INDEX
 - Therefore, need $\Omega(N) = \Omega(n)$ bits for **Gap-Hamming**

Streaming Lower Bounds

- Lower bounds for data streams
 - Communication complexity bounds
 - Simple reductions
 - Hardness of Gap-Hamming problem
 - Reductions to Gap-Hamming

Lower Bound for Entropy

Gap-Hamming instance—Alice: $x \in \{0,1\}^N$, Bob: $y \in \{0,1\}^N$ Entropy estimation algorithm **A**

- Alice runs **A** on enc(x) = $\langle (1, x_1), (2, x_2), ..., (N, x_N) \rangle$
- Alice sends over memory contents to Bob
- Bob continues **A** on enc(y) = $\langle (1,y_1), (2,y_2), ..., (N,y_N) \rangle$

Lower Bound for Entropy

Observe: there are

- 2Ham(x,y) tokens with frequency 1 each
- N-Ham(x,y) tokens with frequency 2 each
- So (after algebra), H(S) = $\log N + Ham(x,y)/N = \log N + \frac{1}{2} \pm \frac{1}{\sqrt{N}}$
- If we separate two cases, size of Alice's memory contents = Ω(N)
 Set ε = 1/(V(N) log N) to show bound of Ω(ε/log 1/ε)⁻²)

Lower Bound for F₀

- Same encoding works for F₀ (Distinct Elements)
 - 2Ham(x,y) tokens with frequency 1 each
 - N-Ham(x,y) tokens with frequency 2 each
- $F_0(S) = N + Ham(x,y)$
- Either Ham(x,y)>N/2 + \sqrt{N} or Ham(x,y)<N/2 \sqrt{N}
 - If we could approximate F_0 with $\varepsilon < 1/\sqrt{N}$, could separate
 - But space bound = $\Omega(N) = \Omega(\epsilon^{-2})$ bits
- Dependence on ε for F_0 is tight
- Similar arguments show $\Omega(\varepsilon^{-2})$ bounds for F_k
 - Proof assumes k (and hence 2^k) are constants

Lower Bounds Exercises

- Formally argue the space lower bound for F₂ via Gap-Hamming
- 2. Argue space lower bounds for F_k via Gap-Hamming
- 3. (Research problem) Extend lower bounds for the case when the order of the stream is random or near-random

Other Streaming Directions

Many fundamentals have been studied, not time to cover here:

- Different streaming data types
 - Massive Matrices, Permutations, Graph Data, Geometric Data
- Different streaming processing models
 - Sliding Windows, Exponential and other decay, Random order streams, Skewed streams
- Different streaming scenarios
 - Gossip computations, sensor network computations, MapReduce computations
- Different streaming applications
 - Advanced mining algorithms, large scale machine learning

